

Twin Screw Extruder and Continuous Mixer Rate Limitations

Anthony C. Neubauer SPE Fellow; Dow Fellow (retired)

Materials Processing Consultants LLC

Why Extruders?

- Ideal for processing viscous fluids; e.g., polymers
 - Melting
 - Pressure Generation
 - Blending and Compounding
 - Devolatilization
 - Reactive Extrusion

Morphology Conversion e.g., blown film blow molding injection molding sheet tubing / pipe granular → pellets

Equipment Description

In essence, a series of forward acting and reverse acting screw 'pumps' with & without throttling systems.

Assumptions

- Resin Feed System not Limiting
- Starved Fed, i.e., <u>not Flood Fed</u>
- Downstream Processing Systems not Limiting
 - Melt Filtration
 - Die Pressure
 - Etc.

Rate Limiting Systems

- ***** Power (Torque)
- * Feed Neck; i.e., no longer Starved Fed
 - Feed Throat Fluidization
 - Solids Conveying
 - Screw Channel Fluidization
 - Melt Conveying
 - Melting Section
- Other
 - Compounding and Blending
 - Reactive Extrusion
 - Devolatilization

Power (Torque) Limitation

Maximum Allowable Power

Specific Energy Input (SEI)

SEI is a function of:

 $Rate_{max}$

- Polymer Type
 - Viscosity; MW and MWD
 - Heat of Fusion
- Screw / Rotor Geometry
- Operating Conditions
 - Speed, Feed Rate, Feed Temperature
 - Discharge Pressure
 - Slot / Gate / Throttle Valve Position (if applicable)

Power (Torque) Limitation

Resin Mass Rate

Feed Throat Fluidization

Return Gas is the result of the Δ between solid and melt bulk densities; e.g.,

	Bulk Density,	Volumetric	
	kg/m ³	Rate, m ³ /hr	
Solid	400	4.0	
Melt	800	2.0	
	$\Delta =$	2.0	

Velocity,
m/sResin0.17Gas0.09

Basis: 90 mm Ø Port

Basis: 1,600 kg/h Resin Feed Rate

Feed Throat Fluidization

Machine Size

Solids Conveying

Machine Size

Screw Channel Fluidization

$Ratio = \frac{Superficial Gas Velocity}{Minimum Fluidization Velocity}$

Less than 5: No fluidization in the screw channels. Greater than 8: Sufficient fluidization within the screw channel to result in rate limitation.

Fluidization Solutions

- Increase cross-sectional area free volume
 - rectangular feed throats
 - modify screw cross-section profile
- Increase screw / rotor speed
- Increase effective particle size and bulk density
 - co-feed large particles
 - use cohesive additive
- Design TSE / CM with up or down stream vents
- Install force feeder (crammer / stuffer)

Melt Conveying

Governing Equation:

$$\dot{Q}_{net} = \dot{Q}_{drag} - \dot{Q}_{pressure}$$
$$= \alpha * N - \frac{\beta * P}{\mu}$$

Melt conveying increases when:

- Free volume increases
- **Speed increases**
- **Discharge pressure decreases**
- **Viscosity increases**

 α , β = geometric constants

Melting Section Continuous Mixer

Machine Diameter

 α , N = constant

$$= \frac{\beta * P * (\mu_F - \mu_R)}{\mu_F * \mu_R}$$

Viscosity	ΔΤ	Δμ	Q _{net}
High	High	High	+++
Low	Low	Low	+

Melting Section Twin Screw Extruder

- Difficult to generalize
 - Principles similar
- 'Infinite' number of combinations
- Refer to manufacturers "Processing Guidelines"
 - Basic operating characteristics

Combined Results

Resin Mass Rate

Rate Limiting Systems - Other

- Blending and Compounding
 - Distributive mixing
 - Dispersive mixing
- Reactive Extrusion
 - Injection & mixing of reactants
 - Activation energy, kinetics, etc.
 - Residence time
- Devolatilization
 - Diffusion, surface renewal, etc.
 - Mixing; e.g., stripping agent
 - Vent gas flow velocity -

dispersive and distributive mixing

Vacuum ports vapor-liquid separation Souders-Brown eq.

V =
$$k \sqrt{\frac{\rho_1 - \rho_v}{\rho_v}}$$

18

References

- Neubauer, A.C., Leach, E.A., "Twin Screw Extruder and Continuous Mixer Rate Limitations", *SPE ANTEC Technical Papers*, **49**, 327 (2003)
- Souders, M., Brown, G.G., "Design of Fractionating Columns, Entrainment and Capacity", *Industrial and Engineering Chemistry*, **26**, 98 (1934)
- Todd, D.B., "Polymer Devolatilization", *32nd SPE ANTEC Technical Papers*, 472 (1974)
- Biesenberger, J.A. (ed.), **Devolatilization of Polymers: Fundamentals, Equipment, Application**, Hanser (1983)

Questions ??